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Abstract An h-adaptive finite element code for solving coupled Navier-Stokes and energy
equations is used to solve the thermally driven cavity problem. The buoyancy forces are
represented using the Boussinesq approximation. The problem is characterised by very thin
boundary layers at high values of Rayleigh number (> 106). However, steady state solutions are
achievable with adequate discretisation. This is where the auto-adaptive finite element method
provides a powerful means of achieving optimal solutions without having to pre-define a mesh,
which may be either inadequate or too expensive. Steady state and transient results are given for
six different Rayleigh numbers in the range 103 to 108 for a Prandtl number of 0.71. The use of
h-adaptivity, based on a posteriori error estimation, is found to ensure a very accurate problem
solution at a reasonable computational cost.

1. Introduction
Thermally driven cavity flow has been used to validate computer fluid flow
models for the last two decades; it is also an important flow problem in its own
right. Simulating a large horizontal temperature difference across a vertical
cavity has applications in nuclear reactor insulation, double glazing, predicting
fire spread in buildings and dispersion of heat in estuaries. The thermal cavity
problem has been extensively studied and solved for Prandtl number of 0.71
(corresponding to an air filled cavity) over a range of Rayleigh numbers in a
steady state (de Vahl Davis and Jones, 1983; Jones, 1979; Saitoh and Hirose, 1989;
de Vahl Davis, 1983), and transient manner (Le Quere, 1991; Chenoweth and
Paolucci, 1986; Paolucci and Chenoweth, 1989). Several researchers have solved
this problem using Pr = 1.0 (Greshe et al., 1979; Marshall et al., 1978; Usmani,
1991); however, Patterson and Imberger (1980) determined that the steady state
result is independent of the Prandtl number, but the transient behaviour, and
hence the approach to steady state, is not. De Vahl Davis and Jones (1983) invited
researchers to submit solutions of the thermal cavity problem using Pr = 0.71. A
complete set of results is available for comparison of flow data at Rayleigh
numbers from 103 to 106. They concluded that, for a given problem and solution
technique, mesh density controlled the accuracy of the results.

They also concluded that, although there were accurate contributions from
both the FEM and FDM, the former was by and large the better, giving better
results at higher Rayleigh numbers. They also recommend that further work be
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conducted on the selective refinement of the mesh in the region of the boundary
layers, stressing that this would be important for high Rayleigh numbers.

Finally they report that Upson et al., who produced one of the best solutions,
used the finite element method and had taken care to provide a high density of
grid points in the wall and corner regions of the cavity.

Solutions have been obtained for Rayleigh numbers of 107 and 108 by a
number of authors, for instance Saitoh and Hirose (1989), Le Quere (1991),
Haldenwang (1986), Haldenwang and Labrosse (1986), Le Quere and De
Roquefort (1985), but the volume of published results is considerably less than
for the lower Rayleigh number cases. Solutions for Rayleigh numbers 103 to108

will be presented in this paper and compared with the existing results.

2. Governing equations
The governing equations have been written for a constant density, incompressible
Newtonian fluid using the Boussinesq approximation to model buoyancy:

Continuity r � v � 0 �1�
where v represents the velocity.

Navier-Stokes

�
@v

@t
� v � rv

� �
�rP � r � � rv� rv� �T

h i
ÿ �g� T ÿ Tr� � �2�

subject to boundary conditions:

F � Pnÿ � rv� rv� �T
h i

� n �3�
v � �v x; y; t� � �4�

and initial conditions:

v t � 0� � � vo with r � vo � 0 �5�
where � is the dynamic viscosity, g is the acceleration due to gravity, � is the
volumetric coefficient of thermal expansion, T is the temperature, Tr is a reference
temperature, F represents the applied tractions on the boundary and n is the unit
normal vector.

Energy
@T

@t
� v � rT � r��rT �6�

subject to boundary conditions:

n � �rT� � � q �7�
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T � �T x; y; t� � �8�
and initial conditions:

T t � 0� � � To �9�
where q is a specified normal heat flux and � is the thermal diffusivity given
by:

� � k

�Cp
�10�

where k is the thermal conductivity, � is the fluid density and Cp is the specific
heat capacity.

Finite element formulation
The program is based on the Galerkin Finite Element Method (GFEM), solving
for the primitive variables: U-velocity, V-velocity and T-temperature at all
nodes in the mesh and P-pressure at a reduced level of interpolation to avoid
spurious pressure modes, using a mixed formulation for the Navier-Stokes
equations. The Navier-Stokes and energy equations were coupled by the
Boussinesq approximation for buoyancy. Notation used here is as used by
Gresho et al. (1979, 1980). The Galerkin FEM discretisation produces a system
of ODEs as follows:

Navier-Stokes

Mu 0 0
0 0 0
0 0 Mv

24 35 _u
_P
_v

0@ 1A � Kuu Cu Kuv

CT
u 0 CT

v

Kvu Cv Kvv

24 35 u
P
v

0@ 1A �
Fu

0
Fv

0@ 1A:
The first to third rows represent the x-momentum, continuity and y-momentum
equation respectively. The right-hand side vector Fv contains the coupling
buoyancy term.

Energy

MT� � _T
ÿ � � left�KT � T� � � FT� �:

Expansion of all terms can be found in Usmani et al. (1992). The two systems of
equations above are solved as a coupled system, with the KT term containing
the velocities (obtained from solving the flow field) and the Fv term containing
the buoyancy forces (determined by the temperature field).

Temporal discretisation
Temporal discretisation of the time domain is achieved by applying the
generalised midpoint rule (Hughes, 1983, 1987):
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Mn��
��t

�Kn��

� �
�n�1� � � Mn��

��t
ÿ �1ÿ ��

�
Kn��

� �
�n� � � Fn��� �

�
�11�

Variation of � leads to different members of this family of methods, i.e.
� � 0 ± forward difference or forward Euler.

� � 1
2 ± midpoint rule or Crank Nicolson.

� � 2
3 ± Galerkin.

� � 1 ± backward difference or backward Euler.

The Crank Nicolson, Galerkin and backward Euler schemes are all
unconditionally stable; however, of these methods the oscillation limit is lowest
for � � 1

2. A larger time step size chosen for Ra! 103 to 107 constrains the
choice of � to 2

3. The time step size for Ra � 108 is chosen to be small enough
to avoid an oscillatory solution when using � � 1

2. The choice of
unconditionally stable implicit methods is enforced by the use of h-adaptivity
as the smallest elements determine the stability of conditionally stable explicit
methods, which makes them impractical for use in this context.

The formulations described above were implemented in the implicit
transient FE code CADTRAS (Coupled Advective Diffusive TRAnSport
model), which was used to solve the thermally driven cavity problem. The code
incorporates an unstructured Delaunay triangulation based mesh generator
(Huang and Usmani, 1994), which allows automatic adaptive re-meshing to
take place at each time step if necessitated by the a posteriori error estimation
algorithm. Six-node triangular elements are used for all the meshes.

3. Adaptivity
The use of h-adaptivity enables the solution of this problem at high Rayleigh
number without the necessity of designing a suitable mesh at first and going
through a trial-and-error process. Adaptivity automatically produces an optimal
mesh based on a user specified discretisation error, thus saving computational time
and focusing intelligently over successive time steps on areas of high scalar
gradients (which for this problem coincide with the areas of high velocity gradients).

There are five distinct steps to the iterative adaptive process used here:

(1) Solution of the coupled system.

(2) Recovery of smoothed scalar gradients using the super-convergent
patch recovery (SPR) method (Zienkiewicz and Zhu, 1991).

(3) Error estimation using the a posteriori error calculated at all nodes in the
mesh for the scalar field.

(4) Re-meshing based on the mesh sizes produced from the previous step.

(5) Transfer of all data to the new mesh.
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Recovery
The temperature field generated by the finite element method is most accurate
at nodal points, whereas the temperature gradients are most accurate at
Gaussian integration points, known as the super-convergence phenomenon.
Hinton and Campbell (1974) showed that finite elements produce superior
values of temperature gradient at node points after application of a smoothing
procedure. Their method was based on a global smoothing scheme requiring
the solution of a large system of equations. A more efficient and effective
procedure was introduced by Zienkiewicz and Zhu (1991), called super-
convergent patch recovery (SPR). The smoothed nodal gradients are calculated
from the Gauss points on a patch of elements surrounding a node, using a least
squares interpolation, for each node in the mesh.

Error estimation
The error estimator used was originally derived for heat conduction (Lewis et
al., 1991). Mathematical justification of using such an estimator for the problem
of this paper does not exist; however, as the estimator used is based on the
scalar flux, it has proven very effective in detecting regions of high scalar
gradient, which in practice is sufficient for the purposes of this paper. The a
posteriori error is based upon an energy norm (see Zienkiewicz and Zhu, 1987):

jjejj2 �
Z




�rT�T�rTd
ÿ
Z




�rT̂�T�rT̂d
 �12�

If we define

jjQjj2 �
Z




�rT�T�rTd


jjQ̂jj2 �
Z




�rT̂�T�rT̂d
 �13�

then equation (12) can be rewritten as

jjejj2 � jjQjj2 ÿ jjQ̂jj2: �14�
Such a definition allows a practical representation of the error norm in terms of
a percentage error �,

� � jjejjjjQjj x100%: �15�

Re-meshing and mesh generation
Specification of a permissible error �� determines the level of refinement
throughout the mesh, leading to a predicted reduction or increase in the element
sizes so that the new mesh may possess an approximately equal distribution of
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error. The maximum permissible error for each element is calculated as:

jĵejje � ��
jjQjj2

m

 !1
2

�16�

where m is the number of elements, �� is the specified maximum percentage
error. Dividing jĵejje by the calculated error in an element yields a parameter �e

as follows:

�e � jjejjejĵejje
�17�

i.e. if �e > 1 the mesh must be refined in the vicinity of element e; conversely, if
�e < 1 the mesh may be coarsened. The new element size is calculated using

�he � he

�e
1
p

�18�

where he is the original element size and p is the order of the element shape
functions.

Mesh data transfer
Ensuring proper transfer of variables between meshes is crucial for
conservation of quantities such as energy and momentum. A transfer strategy
using local coordinates of nodal points and elemental shape functions has been
used that maps the mesh data accurately. The local coordinates � ÿ �� � of each
node in the adapted mesh are determined with respect to the elements of the
previous mesh. Element shape functions are then used to interpolate the data
on to the new mesh nodes.

4. The thermally driven cavity benchmark problem
The problem involves modelling fluid flow in a two-dimensional square cavity
of typical dimension L with the two vertical walls being maintained at a
temperature difference of �T (see Figure 1). The top and bottom walls are
insulated and the velocities at all boundaries set to zero. The fluid inside the
cavity is initially at rest and at a temperature which is the mean of the
temperatures on the vertical walls.

The steady state flow and heat transfer in the thermal cavity are
characterised by the Rayleigh number:

Ra � g�
�TL3

��
: �19�

The following non-dimensional groups are used in the analysis and
presentation of the computational results:
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Velocity

u� � uL

�
�20�

v� � vL

�
�21�

Temperature

T� � T ÿ T2

T1 ÿ T2
�22�

Coordinates
x� � x

L
�23�

y� � y

L
�24�

Time

t� � �t

L2
�25�

where * indicates the non-dimensional quantity. T1 and T2 are the fixed
temperatures at the two side walls of the cavity.

Figure 1.
Boundary conditions for
thermal cavity
benchmark problem
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The Nusselt number is calculated at each node in the domain using

Nu � uT ÿ @T

@x
�26�

where the temperature gradient is obtained by the gradient recovery process.

Results
The spacing between the isotherms at the sides of the cavity decreases with
increasing Rayleigh number. The high level of mesh refinement in this area
allows the thin boundary layer to be captured accurately, avoiding any
oscillations that can be generated when modelling steep temperature gradients
without adequate discretisation. A uniformly distributed mesh with the `̀ same''
number of elements will be inadequate to model large changes in temperature
at the boundary and will produce an oscillatory solution. At high Rayleigh
numbers (> 106) a convergent solution may not be possible at all. Figure 2

Figure 2.
Mesh development for

Ra = 108
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shows the top half of the cavity for four different dimensionless times. It can be
seen that the mesh adapts to follow the high temperature gradient front as it
passes the departing corner. The refinement of the mesh around the side walls
at t = 0.0001 (Figure 2(a)) is due to a pre-adaptive loop where the mesh is
refined based on the initial conditions.

Figure 3 shows plots of velocity and temperature along the centre line of the
cavity (y � 0) for each Rayleigh number at steady state. The Figure clearly
shows that mesh refinement based only upon the temperature gradients is
appropriate for this problem as the steep velocity gradients occur in the same
locations as the steep temperature gradients.

Figures 4-9 show the mesh, velocity vectors, pressure field and isotherms for
each Rayleigh number at steady state.

The parameters presented are described in Table I:

Ra! 103 to 106:

Table II shows results obtained for the six Rayleigh numbers investigated.
The results for all the values measured are very close to the accurate results

obtained by De Vahl Davis (1983), only deviating slightly at 106. The error
between De Vahl Davis' solution and the adaptive FEM results have been
calculated and presented in Table III, in the manner presented in de Vahl Davis
and Jones (1983):

Ra! 107 to 108:

Established benchmark solutions analogous to the lower Rayleigh number
results do not exist for the higher Rayleigh number problems. However, several
researchers have solved the thermally driven cavity problem for 107 and above.
Table IV shows the comparison of the adaptive FEM results with others for
the Rayleigh number of 107. Again, the adaptive FEM results compare well
with other solutions both in the magnitude of velocity and heat transfer rates
and with the locations of the maximum and minimum values. A similar
comparison is shown in Table V for Rayleigh number 108; the same
conclusions apply.

6. Conclusion
A full set of results have been produced for the thermally driven cavity
problem at Rayleigh numbers of 103 to 108. The use of h-adaptivity ensures a
very accurate solution to this problem at a reasonable computational cost. A
pre-adaptive step, adapting the mesh on the basis of the fixed temperature
boundary conditions, allows the thin boundary layers to be captured effectively
from the very beginning. The results presented compare well with existing
transient and steady state solutions both qualitatively and quantitatively. For
highly advection dominated problems, such as the high Rayleigh number cases
of the thermally driven cavity, h-adaptivity fulfils another very important
function, in addition to the vital task of providing optimal meshes. This
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Figure 3.
Velocity and

temperature near the
vertical boundary



HFF
10,6

608

Figure 4.
Mesh, velocity vector
plot, temperature
contours and pressure
contours for a Rayleigh
number of 103

Parameter Description

Umax Maximum horizontal velocity on vertical mid-plane of cavity

y y-coordinate position of maximum horizontal velocity on vertical mid-plane

Vmax Maximum vertical velocity on horizontal mid-plane of cavity

x x-coordinate position of maximum vertical velocity on horizontal mid-plane

Nu0 Average Nusselt number on the vertical boundary x = 0

Numax Maximum Nusselt number on the vertical boundary x = 0

y y-coordinate position of maximum Nusselt number on vertical boundary x = 0

Numin Minimum Nusselt number on the vertical boundary x = 0

y y-coordinate position of minimum Nusselt number on vertical boundary x = 0
Table I.
Measured parameters
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Figure 5.
Mesh, velocity vector

plot, temperature
contours and pressure

contours for a Rayleigh
number of 104

103 104 105 106 107 108

Umax 3.6493 16.1798 34.7741 64.6912 145.2666 283.0689

y 0.8125 0.8235 0.8535 0.8460 0.8845 0.9455

Vmax 3.6962 19.6177 68.6920 220.8331 703.2526 2,223.4424

x 0.1790 0.1195 0.0665 0.0380 0.0215 0.0130

Nu0 1.1149 2.2593 4.4832 8.8811 16.3869 29.6256

Numax 1.5062 3.5305 7.7084 17.5308 41.0247 91.2095

y 0.08956 0.1426 0.08353 0.03768 0.03899 0.0670

Numin 0.6913 0.5850 0.7282 0.9845 1.3799 2.0440

y 1.0 1.0 1.0 1.0 1.0 1.0

Table II.
The benchmark

solution
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function is related to the deficiency of standard Galerkin finite element method

(analogous to centred difference FDM) in solving flow and transport problems

where advection is the dominant mechanism. Many special techniques exist in

order to address this deficiency, such as the SUPG method (Brooks and

Hughes, 1982) and the Taylor-Galerkin method (Donea, 1984). However, Gresho

and Lee (1981) have shown that the oscillations that result from using GFEM in

Figure 6.
Mesh, velocity vector
plot, temperature
contours and pressure
contours for a Rayleigh
number of 105

103 104 105 106

Umax 0.0 0.0 ±0.1 ±0.1
Vmax 0.0 0.0 ±0.1 ±0.7
Nu0 0.2 ±1.0 0.6 ±0.7
Numax ±0.1 ±0.1 0.1 2.2
Numin 0.1 0.2 0.1 0.5

Table III.
Solution error (%)
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Figure 7.
Mesh, velocity vector

plot, temperature
contours and pressure

contours for a Rayleigh
number of 106

Present work
Haldenwang

(1986)
Le Quere

(1991)
Chenoweth

(1986)
Le Quere

(1985)

Umax 145.26 381.6 148.6 146 148.8
y 0.8845 0.879 0.881 0.879
Vmax 703.2526 700.4 699.1 699 699.3
x 0.0215 0.021 0.0213 0.0213
Nu0 16.3869 16.53 16.523 16.82 16.51
Numax 41.0247 39.39 39.37
y 0.03899 0.018 0.0180
Numin 1.3799 1.36635 1.367
y 1.0 1.0 1.0

Table IV.
The benchmark

solution for Ra = 107
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Figure 8.
Mesh, velocity vector
plot, temperature
contours and pressure
contours for a Rayleigh
number of 107

Present work Haldenwang (1986) Le Quere (1991)

Umax 283.0689 1,082 321.9

y 0.9455 0.928

Vmax 2,223.4424 2,192 2,222

x 0.0130 0.012

Nu0 29.6256 30.26 30.225

Numax 91.2095 87.2355

y 0.0067 0.008

Numin 2.0440 1.91907

y 1.0 1.0

Table V.
The benchmark
solution for Ra = 108
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advection dominated problems are strongly related to inadequate spatial
discretisation. Usmani (1999) showed conclusively that for transient solution of
advection dominated problems this was indeed the case and the discretisation
produced by using h-adaptivity made it unnecessary to use any special
schemes for advection dominant problems. This finding is confirmed by the
results of this paper, where all results have been produced using simply honest
GFEM. In the opinion of the authors, this fact makes it doubly attractive to use
this method.
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